Applications of machine learning in animal behaviour studies
نویسندگان
چکیده
http://dx.doi.org/10.1016/j.anbehav.2016.12.005 0003-3472/© 2017 The Authors. Published by Elsevie license (http://creativecommons.org/licenses/by/4.0/) In many areas of animal behaviour research, improvements in our ability to collect large and detailed data sets are outstripping our ability to analyse them. These diverse, complex and often highdimensional data sets exhibit nonlinear dependencies and unknown interactions across multiple variables, and may fail to conform to the assumptions of many classical statistical methods. The field of machine learning provides methodologies that are ideally suited to the task of extracting knowledge from these data. In this review, we aim to introduce animal behaviourists unfamiliar with machine learning (ML) to the promise of these techniques for the analysis of complex behavioural data. We start by describing the rationale behind ML and review a number of animal behaviour studies where ML has been successfully deployed. The ML framework is then introduced by presenting several unsupervised and supervised learning methods. Following this overview, we illustrate key ML approaches by developing data analytical pipelines for three different case studies that exemplify the types of behavioural and ecological questions ML can address. The first uses a large number of spectral and morphological characteristics that describe the appearance of pheasant, Phasianus colchicus, eggs to assign them to putative clutches. The second takes a continuous data stream of feeder visits from PIT (passive integrated transponder)-tagged jackdaws, Corvus monedula, and extracts foraging events from it, which permits the construction of social networks. Our final example uses aerial images to train a classifier that detects the presence of wildebeest, Connochaetes taurinus, to count individuals in a population. With the advent of cheaper sensing and tracking technologies an unprecedented amount of data on animal behaviour is becoming available. We believe that ML will play a central role in translating these data into scientific knowledge and become a useful addition to the animal behaviourist's analytical toolkit. © 2017 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
منابع مشابه
Forecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملA Review of Surface-Enhanced Raman Spectroscopy on Potential Clinical Applications Towards Diagnosing Colorectal Cancer
Colorectal cancer (CRC) is one of the leading cancers in the world and early-screening is still the best method of cancer patient survival. However, colonoscopy as the current gold standard is not without flaws and an emerging technique called surface-enhanced Raman spectroscopy (SERS) coupled with machine learning is a possible candidate that could be applied in parallel with colonoscopy. This...
متن کاملA Review of Surface-Enhanced Raman Spectroscopy on Potential Clinical Applications Towards Diagnosing Colorectal Cancer
Colorectal cancer (CRC) is one of the leading cancers in the world and early-screening is still the best method of cancer patient survival. However, colonoscopy as the current gold standard is not without flaws and an emerging technique called surface-enhanced Raman spectroscopy (SERS) coupled with machine learning is a possible candidate that could be applied in parallel with colonoscopy. This...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Animal Behaviour
دوره 124 شماره
صفحات -
تاریخ انتشار 2017